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CASCADE TRANSFER OF ENERGY, VORTICITY, AND A PASSIVE IMPURITY IN HOMOGENEOUS 

ISOTROPIC TURBULENCE (TWO- AND THREE-DIMENSIONAL) 

A. G. Bershadskii UDC 532.517.4 

Unidimensional turbulence is modeled experimentally in flowsbehind a grid. An extensive 
amount of empirical data has been accumulated on this subject, but several problems arise in 
connection with its analysis. Of primary interest is the reason that different exponents n 
in exponential laws describing the decay of fluctuation energy <u2> ~ t TM are obtained in dif- 
ferent experiments (see [i], for example). It is believed that these differences are connected 
with the "initial" conditions (although the authors of [2] assert that the problem lies in 
the analysis itself). The more refined spectral characteristics of the velocity field (and 
the field regarding a passive impurity) also differ in different experiments [i, 3]. 

Recent investigations have also been concerned with quasi-two-dimensional turbulence 
realized (as hypothesized) in grid flows of a strongly conducting fluid in a strong transverse 
magnetic field [4-6]. The results of the experiments conducted here are also conflicting. 

It is generally held that the first question that needs to be answered satisfactorily 
is the connection between the spectral characteristics (exponential asymptotes) and the expon- 
ent n in the exponential law of fluctuation energy decay <~> The point is that <u2> is 
coarser than the spectrum, an experimental characteristic. Thus, its measurements are more 
reliable. 

To establish such a connection~ it is necessary to go outside the framework of the scale- 

2 [E(k)dk the range of values of k for which invariant interval because, in the integral <u~> ~-j_ 

0 

E(k) is known should be broad enough to obtain a good approximation of the entire integral 
[3]. As a result, it is necessary to determine additional features of the process of vortex 
breakup (combination). 

A vortex of a certain scale can be subdivided into two, three, or more smaller vortices. 
We will assume that for each fixed scale (wave number k) there is a certain probable multi- 
plicity of subdivisions ~k" Meanwhile, the smaller vortices into which the initial vortex is 
subdivided are of approximately the same dimensions. Since the process of vortex breakup 
(combination) occurs as a result of inertial effects, we will assume that the inertial interac- 
tion of the vortices is realized mainly during the subdivision (combination). As a result 
of formalization of this physical hypothesis, we obtain an equation for the spectral function 
of the velocity field which accounts for the spectral hypotheses of Kolmogorov-Obukhov (for 
three-dimensional turbulence) and Kraichnan-Batchelor (for two-dimensional turbulence). The 
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present investigation is devoted to study of the solutions of this equation and comparison of 
their properties with known grid experiments. 

We will similarly use the Obukhov-Corrsin spectral hypothesis for the cascade transport 
of a passive impurity (in particular, temperature). It wil be shown that if the exponential 
spectral asymptotes of the velocity field and the impurity coincide, then the decay laws for 
<u~ and <e2> also coincide. A correspondence with the experimental data is also estab- 
lished here. 

i. Cascade Equation. The equation for the spectral fucntion of the velocity field 
F(k, t) can be formally written in the form [3] 

OF(k, t)/Ot = F(k, t ) -  2vk2F(k, t). ( 1 . 1 )  

It is customary to refer to r(k, t) as the rate of spectral energy redistribution; it is a 
function of k and t and a functional of F and is determined by inertial transport processes. 
If F is sufficiently small, then we expand F into a functional series in powers of F. Due 
to the nonlinearity of the inertial processes, this will be a series in fractional powers 
of F (an expansion in the neighborhood of a branch point): 

I ' =  E dkl . . .  d~nFl/m(~l) . . .  F1/m(kn) a(~l . . . .  ~n;  ~, t) 
~ = 0  0 

(m is a fixed integer). Since the inertial effects in the Navier--Stokes model are quadratic 
with respect to velocity, we choose the leading degree in this expansion on the basis of corres- 
pondence with the Navier-Stokes model in the form 

co 

r = j" dk, dl,.., dk3 G (k~, k.,, k3; k, t) F '/' (k,) F '/" (k.,.) F ~/2 (k.~). 
0 

(i.2) 

The function G describes the inertial effect of vortices with the scales k[1,k~l,k~ l on vortices 
with the scales k -I. 

Let us examine the case when this inertial effect is determined mainly by breakup (com- 
bination) of vortices. The breakup (combination) of eddies is characterized primarily by the 
multiplication factor, i.e., by the mean number of eddies formed after the breakup of one eddy 
(or after combination, conversely). 

If the vortex subdivides into N vortices, then the multiplication factor of the subdivi- 
sion ~ = I/N (for the combination of N vortices into one vortex, ~ = N). We will assume that 
for a fixed value of k, there is a most probable value of ~k" If the inertial interaction of 
eddies is determined by their breakup (combination) over a sufficiently large interval of wave 
numbers, then the function G(kl, k2, k3; k, t) can be approximated by a singular generalized 
function with a carrier at the point k I = k 2 = k 3 = ~k. It follows from the well-known theo- 
rem on the structure of such functions [7] that G(kl, k 2, k3; k, t) is uniquely represented 
in the form 

C ( k .  k2, k~;, k, t) ---- ~%7 ~p (k, t) DP5 (~flc - -  kj) 5 (~j}~ - -  k2) S (cr - -  /,'3), 
IpI~N 

where gp(k, t) is a function of k and t; N is the order of the function G; 6(x) is the Dirac 
delta function; OP/(x) ~Ii~I~ ~,~ Jq~ 7h~ 7'~ = =u 7~x]/aoYl ax2 a2s, [Pl Pl -r P, __r P3 �9 The order of the function G is 
determined by the differentiai properties of the function F [7, p. 22]. Inserting this repre- 
sentation into (1.2), we obtain 

N 

F = ~ I~ (k, t ) ( - -  ] )~a-~O~F 3/2 (~., O/Oh m ( 1 . 3 )  
~ = 0  

(fm is a function of k and t). The order of function G can be determined by means of the 
Batchelor-Proudmen analysis from [8]. Without going into the details of this process, we note 
that N > 2 for three-dimensional isotropic turbulence and N = 2 for the two-dimensional case. 

As regards the coefficient functions fm(k, t), we will approximate fm(k, t) exponen- 
tially to ensure the existence of scale-invariant asymptotes for F(k, t): fm(k,t) = -Cmt~k6(c m, 
and ~ are real parameters).The terms in the sum (1.3) with order m > 0 are important only for 
large-scale fluctuations. Thus, instead of (1.3), we write the approximation 
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F = --CotVk~F%'2(ak, t). ( l .  4) 

It is obvious that Eq. (1.4) is valid only on a certain interval of wave numbers, since it 
relates only to energy sinks. 

Thus, we have 

OF(k, o / a t  = _CotVZ6F3/e(ak, t) - -  2 v k i F  (k, t). ( 1 . 5 )  

"Closing" hypothesis (1.4) is of fundamental importance for obtaining this equation, since 
it reflects the representation both of the cascade and of the physical process of eddy break- 
up. 

2. Energy Cascade in the Three-Dimensional Case and Initial Conditions. What should 
we choose as an initial condition for Eq. (1.5)? The simplest would be the condition F0(k) = 
const, i.e., an equal distribution of the density of kinetic energy over the space of the wave 
vectors [3, p. 649]. Since the choice of initial condition will generally be determined by 
the specific physical situation, theadequacy of the initial condition chosen for the calcu- 
lation should be checked by comparing the results of the solution with the corresponding ex- 
periment. 

If we ignore the direct effect of viscosity on the interval of wave numbers being ex- 
amined, then (1.5) is written as 

OF(k, t)/Ot =--CotVk~f;~/2 (ak ,  t). (2.1) 

On the interval of wave numbers on which ~k can be approximately assumed to be constant, we 
make the following substitution of variables: 

T ~ ColV+lk6. (2.2.)  

Then 

In the similarity case 

OF(l,', .O/aT = --Fa/~ (ak, a6~). ( 2 . 3 )  

dF(z ) /dr  = --F3/~(a ~ ) ,  ( 2 . 4 )  

i . e . ,  F ( k ,  t )  depends  o n k  and t o n l y  in  t e r m s  o f  t h e  complex z ( 2 . 2 ) .  

L e t  us f i n d  t h e  d e p e n d e n c e  o f  (ui> on t .  To do t h i s ,  in  t h e  i n t e r v a l  <uZ>Nf E ( k ) d k ,  
we replace the varible k by T (2.2). Then 0 

(ui> ~ t -n, n = 3(1 ~-?)/6.  

The c o n s t a n t s  u and 6 a r e  d e t e r m i n e d  f rom t h e  Kolmogorov--Obukhov s p e c t r a l  h y p o t h e s i s .  
t i o n  o f  Eq. ( 2 . 4 )  has  t h e  e x p o n e n t i a l  a s y m p t o t e  (~ > 0) 

[3]: 

F ( ~ )  - -  T- ~, 

f rom which  t h e  s p e c t r a l  e n e r g y  d e n s i t y  i s  

E(k ,  t) ~ t-2(l+v)k -~(~-1). 

The Kolmogorov-Obukhov hypothesis yields the following on the inertial interval 

where 

We use ( 2 . 5 ) - ( 2 . 9 )  to obtain 

E ,~  ~2/3(t) k -  5/3, 

(2.5) 
The solu- 

(2.6.)  

(2.7) 

(2.8) 

e = d <u"->/dt. ( 2 . 9 )  

= i i / 6 ,  ? = - - 4 / i 5 ,  (2.10) 

(u 2) ~ t -1.2. ( 2 . 1 1 )  

Inserting (2.10) into (2.5), we find 

Thus, the Kolmogorov~bukhov inertial hypothesis (2.8) corresponds to a decay of fluctuation 
energy of the form (2.11) if F0(k) = const is taken as the initial condition. 

Uberoi was evidently the first to observe a relation of the form (2.11) [i0] in an ex- 
periment behind a grid. Figure 1 shows values of the exponent n obtained in different grid 
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experiments (the data was taken from [I]). It is evident that although most of the values 
for n differ little from 1.2, this value cannot be considered unique. Thus, it is currently 
not possible to empirically confirm the premise being discussed (Saffmen, having obtained a 
similar result by a different method, believes that the grid experiment data offers support 
for a connection between a "-5/3" law and n = 1.2). 

3. Entropy Cascade in Two-Dimensional Turbulence. In contrast to three-dimensional 
turbulence, in the two-dimensional case the determining factor is not the energy cascade, but 
the entropy cascade (see [i0, ii], for example). In this case, the Kraichnan-Batchelor hy- 
pothesis [i0, ii] replaces the Kolmogorov-Obukhov inertial hypothesis: 

E (k, t ) ~  ~ 3 k - 3 ,  ( 3 . 1 )  

where e~ ~ d~/dt; Q = (0)2)/2 is the mean square of the curl (entropy). If we now use the 
approach in Part 2, then we find for the initial condition F0(k) = const (equal distribution 
of energy in the wave-vector space) that exponential spectral asymptote (3.1) corresponds 
to the fluctuation energy decay law <u2)-vt -I , while for the initial condition E0(k) = const 
(equal distribution with respect to the scales) the asymptote corresponds to the law (u~)~t-2/3. 

Here, it turns out that 

E(k, t) ~ t-~k -3 ( 3 . 2 )  
in either case. 

It is assumed that at low values of the magnetic Reynolds number, quasi-two-dimensional 
turbulence is realized in flows of strongly conducting fluid in a strong transverse magnetic 
field [4-6, I0, ii]. Here, the role of the magnetic field is reduced to creating and sup- 
pressing two-dimensional turbulence in the plane normal to the induction vector. The field 
does not interact with the two-dimensional turbulence itself [ii] which is very convenient 
for experimental study of such turbulence - since the magnetic field does not affect its 
properties in the given case. Figure 2 shows experimental data [4] obtained in a flow of mercury 
behind a grid with B = 0 and 0.68T (i.e., without a magnetic field and in a strong magnetic 
field). A pronounced exponential asymptote El(k) ~ k-5/3was observed in the experiment with 
B = 0, while an equally pronounced asymptote E I ~ k -~ was seen in the experiment with B = 
0.68T. Figure 3 also shows [4] the empirically established dependence of E I on t (compare with 
Eq. (3.2), t = x/U, where U is the mean velocity of the flow behind the grid and M is the 
mesh of the grid). It must be noted that, compared to Part 2, the agreement between theory 
and experiment here is considerably better (points i and 2 correspond to k 0 = 1240 and 2530 
m-l). Similar empirical results (n = i, 2 and E I ~ k -s/3 at B = 0, n = 2/3 and E I ~k -3 at 
B = 0.8T) were obtained in experiments of the same type (mercury behind a grid in a transverse 
magnetic field) in [5] (evidently the first to conduct such tests) and in [6]. It is not clear 
why the agreement between theory and experiment is very good in these studies and is not in 
most of the experiments in Part 2. It may be that the only difference between the experi- 
ments in Part 3 and Part 2 is the fluid (mercury). It must be emphasized that both initial 
conditions F 0 = const and E 0 = const are realized in the two-dimensional case (i.e., n = i 
and 2/3; see Fig. 2). This also confirms the experimental data reported in [12], where two 
values of n, depending on the initial conditions, were obtained in a grid flow of mercury in 
a transverse magnetic field: n = i and 2/3. 

4. Cascade Transport of a Scalar Impurity. The breakup of eddies leads to the break- 
up of discontinuities of a scalar impurity (in particular, temperature [3, 13]). The authors 
of [13, 14] developed an approach to cascades in a scalar impurity field that is similar 
to the Kolmogorov-Obukhov approach to cascades in a velocity field. Extending this concept 
here to a scalar impurity, we obtain an equation analogous to (2.1) for the three-dimension- 
al spectrum of the field of an impurity O: 

(4.1) 
OFo(k, t)/Ot = --cotVk6F1/2(~k, t)Fo(~k, t). 
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If the parameters y and ~ in (4.1) are the same in (2.1), then we can use the Obukhov-Corrsin 
hypothesis for the inertial-convective interval [3] Ee N Ns-I/3k-~/3 , as in Part 2, to obtain 
(U2)Nt-l'2and<o 2) N t-1'~ from (2.1) and (4.1) (with the initial conditions F0(k ) = const and 

Fe(k,  O) = c o n s t )  . 

Figure 4 (fiaken from [15]) shows experimental data on the evolution of fluctuations of 
a scalar impurity (salinity) behind a grid. Also shown are experimental results from [16] 
on the evolution of fluctuations of temperature (as the scalar impurity) behind a grid (point 
i corresponds to ~(c2)/C , while point 2 corresponds to V (O2)/AT0). The kinetic energy 
of the fluctuations decreases in accordance with the same law as the mean square of the impurity. 
Figure 5 (taken from [15]) shows experimental data on unidimensional longitudinal fluctuations 
of velocity and concentration spectra (point 1 corresponds to G(kl)/(c~> , while 2 corresponds 
to El(k1)~ (u ~ >) 

It should be noted that the decay of fluctuations of a passive impurity behind grids 
is very sensitive to the "initial" conditions, which seriously complicates the problem of an- 
alyzing results obtained in different experiments (see [17, 18], for example). 

l .  
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SOUND PROPAGATION IN POLYDISPERSED GAS SUSPENSIONS 

N. A. Gumerov and A. I. Ivandaev UDC 534.2:532.529 

The majority of studies of acoustics of gas suspensions have investigated propagation 
of linear and slightly nonlinear waves in monodispersed mixtures [i-5]. The effect of poly- 
dispersion on propagation of linear monochromatic waves was first studied in [6]. However 
only the simple case of low mass content of the suspended phase was considered, in which case 
the contribution of particles of a given size to sound dispersion and dissipation is actually 
proportional to their mass fraction in the mixture. The present study will investigate unique 
features of sound wave propagation in polydispersed gas and vapor suspensions for arbitrary 
(not necessarily small) mass content of suspended particles or droplets for the first time. 
Some of the results were reported previously in [7]. 

i. General Considerations. Real gas suspensions of both natural and artificial origin 
are usually not monodispersed. They contain particles of quite differing sizes, which often 
differ greatly from each other. The dispersion composition of such mixtures can be character- 
ized at each point in space by a particle distribution function over size N(a, r, t), as well 
as the minimum amin(r~'t) and maximum amax(r, t) radii. We have 

am~x 

dn(a, r, t) = N (a, r, t) da, n(r, t) = S N (a, r, t) da. 
amin 

Here a is the particle radius, r is the radius vector of the point, t is time, dn is the 
number of particles per unit volume having radii from a to a + de, n is the total number of 
particles of all sizes per unit volume of mixture at the space-time point (r,t) . 

We will consider the quite general case of a mixture with phase transitions at phase 
separationboundaries. In the process of motion of such a mixture, the particle (droplet) dis- 
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